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Introduction
! This tutorial describes practical techniques for time-domain frequency 

stability analysis.
! It covers the definitions of frequency stability, measuring systems and 

data formats, preprocessing steps, analysis tools and methods, 
postprocessing steps, and reporting suggestions.

! Examples are included for many of these techniques.
! Some of the examples use the Stable32 program [SW-6], which is a 

commercially-available tool for understanding and performing frequency 
stability analyses.

! Two good general references for this subject are NIST Technical Note 
1337 [G-16] and a tutorial paper at the 1981 FCS [G-9].

! Note: The references are denoted by [X-#] where X is the topic code 
and # is the reference number.
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Definitions
A frequency source has a sine wave output signal given by [ST-5]

where V0 = nominal peak output voltage
ε(t) = amplitude deviation
ν0 = nominal frequency
φ(t) = phase deviation

For the analysis of frequency stability, we are primarily concerned with the 
φ(t) term.  The instantaneous frequency is the derivative of the total phase:

For precision oscillators, we define the fractional frequency offset as
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Stability Analysis
The time domain stability analysis of a frequency source is concerned 
with characterizing the variables x(t) and y(t), the phase (expressed in 
units of time) and the fractional frequency, respectively.  It is 
accomplished with an array of phase and frequency data arrays, xi and
yi respectively, where the index i refers to data points equally-spaced in 
time.  The xi values have units of time in seconds, and the yi values are 
(dimensionless) fractional frequency, ∆f/f.  The x(t) time fluctuations are 
related to the phase fluctuations by φ(t) = x(t)·2πν0, where ν0 is the 
nominal carrier frequency in Hz.  Both are commonly called "phase" to 
distinguish them from the independent time variable, t.  The data 
sampling or measurement interval, τ0, has units of seconds.  The 
analysis or averaging time, τ, may be a multiple of τ0 (τ=mτ0, where m 
is the averaging factor).

The objective of a time domain stability analysis is a concise, yet 
complete, quantitative and standardized description of the phase and 
frequency of the source, including their nominal values, the fluctuations 
of those values, and their dependence on time and environmental 
conditions.
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Stability Analysis (Con’t)
A frequency stability analysis is normally performed on a single device, not 
a population of such devices.  The output of the device is generally 
assumed to exist indefinitely before and after the particular data set was 
measured, which are the (finite) population under analysis.  A stability 
analysis may be concerned with both the stochastic (noise) and 
deterministic properties of the device under test.  It is also generally 
assumed that the stochastic characteristics of the device are constant (both 
stationary over time and ergodic over their population).  The analysis may 
show that this is not true, in which case the data record may have to be 
partitioned to obtain meaningful results.  It is often best to characterize and 
remove deterministic factors (e.g. frequency drift and temperature 
sensitivity) before analyzing the noise.  Environmental effects are often best 
handled by eliminating them from the test conditions.  It is also assumed 
that the frequency reference instability and instrumental effects are either 
negligible or removed from the data.  A common problem for time domain 
frequency stability analysis is to produce results at the longest possible 
averaging times in order to minimize test time and cost.  Analysis time is 
generally not as much of a factor.
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Power-Law Clock Noise
A perfect frequency source would have a constant value equivalent to a 
single spectral line.  It has been found that the instability of most 
frequency sources can be modeled by a combination of power-law noises 
having a spectral density of their frequency fluctuations of the form Sy(f) ∝
fα, where f is the Fourier or sideband frequency in Hz.

Noise Type Alpha

White PM 2

Flicker PM 1

White FM 0

Flicker FM -1

Random Walk FM -2

The even more divergent flicker walk (α=-3) and random run (α=-4) noise 
types are sometimes encountered.
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Clock Noise (Con’t)

The frequency stability analyst soon becomes familiar with these noise 
types, and the devices that display them.  For example, passive atomic 
frequency standards have an inherent white FM noise characteristic that 
falls off with the square root of the averaging time until some flicker FM 
floor is reached (often caused by environmental effects).  A summary of 
common frequency sources and their typical noises is shown below:

Source Short Term Medium Term Long Term
Xtal Osc W & F PM F & RW FM Aging
Rb Std W FM F FM Aging
Cs Std W FM W FM F FM
H Maser W PM W FM RW FM & Aging
GPS Rx W PM Flywheel Osc GPS System
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Power Spectral Densities
The following power spectral densities are commonly used as frequency 
domain measures of frequency stability:

Formula Units Description
Sy(f) 1/Hz PSD of fractional frequency fluctuations
Sx(f) sec²/Hz  PSD of time fluctuations
Sφ(f) rad²/Hz PSD of phase fluctuations
£(f) dBc/Hz SSB phase noise to carrier power ratio 

where: PSD = Power Spectral Density
SSB = Single Sideband
dBc = Decibels with respect to carrier power

The relationship between these is:
Sx(f) = Sy(f)/(2πf)²
Sφ(f) = (2πνo)² · Sx(f)
£(f)  = 10·log[½ · Sφ(f)]

where νo is the carrier frequency, Hz.
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Frequency Stability Statistics
! Statistical measures are used to characterize the fluctuations of a 

frequency source.  These are 2nd-moment measures of scatter, much 
like the standard variance is used to quantify the variations in (say) the 
length of  rods around a nominal value.  The variations from the mean 
are squared, summed, and divided by the number of measurements -1.

! The result is often expressed as the square root, the standard deviation.
! Unfortunately, the standard variance 

does not converge to a single value 
for the non-white FM noises as the 
number of measurements is increased. 
Thus it is not a suitable statistic to 
describe the stability of most frequency 
sources. 1.0
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Freq Stability Statistics (Con’t)
! The Allan variance was developed to solve this problem.  It uses 2nd

differences of frequency (rather than differences from the mean) to 
calculate the variations, and is convergent for most clock noises.

! Other variances (e.g. Hadamard) have been devised that converge for 
all clock noises and handle frequency drift.

! Still other variances provide PM noise discrimination (e.g. Modified 
Allan), or provide better confidence(e.g. Overlapping & Total).

! Thus the analyst has a number of effective statistical tools at his 
disposal to describe the instability of a frequency source.
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Sigma-Tau Diagrams

Sigma-Tau plots show the 
dependence of stability on 
averaging time, and are a 
common way to describe 
frequency stability.  The power 
law noises have particular 
slopes, µ, on these log σ vs. log τ
plots.   α and µ are related as 
shown in the table below:

Noise  α µ
W    PM 2 -2
F     PM 1 -2
W    FM 0 -1
F     FM -1 0
RW FM -2 1
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Variance Types
Variance Type Characteristics
Standard Non-convergent for some clock noises – Don’t use
Allan Classic – Use only if required – Poor confidence
Overlapping Allan General Purpose - Most widely used – 1st choice
Modified Allan Used to distinguish White and Flicker PM
Time Based on modified Allan variance
Hadamard Rejects frequency drift
Overlapping Hadamard Better confidence than normal Hadamard
Total Better confidence at long averages
Modified Total Better confidence than modified Allan deviation
Time Total Better confidence than for time deviation
Hadamard Total Better confidence than for Hadamard deviation
Thêo1 Provides information over full record length
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Variance Types (Con’t)
! All are 2nd-moment measures of dispersion – scatter or instability of 

frequency from central value.
! All are usually expressed as deviations.
! All are normalized to standard variance for white FM noise.
! All except standard variance converge for common clock noises.
! Modified types have additional averaging that can distinguish W and F 

PM noises.
! Time variances based on modified types.
! Hadamard types also converge for FW and RR FM noise.
! Overlapping types provide better confidence than classic Allan variance
! Total types provide better confidence than overlapping.
! Thêo1 (Theoretical Variance #1) provides stability data out to nearly the 

full record length.
! Some are quite computationally-intensive, especially if results are 

wanted at all (or many) averaging times.
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Fully Overlapping Samples
! Some stability calculations can utilize (fully) overlapping samples:

! The use of overlapping samples improves the confidence of the 
resulting stability estimate at the expense of greater computational time.

! The overlapping samples are not completely independent but 
nevertheless do increase the effective number of degrees of freedom 
(see later) and thereby improve the confidence in the results.

! The choice of overlapping samples applies to the Allan and Hadamard 
variances.  Other variances (e.g. total) always use them.

! Overlapping samples don’t apply at the basic measurement interval, 
which should be as short as practical to support a large number of 
overlaps at longer averaging times.

1 2 3 4

Non-Overlapping SamplesAveraging Factor, m =3

Overlapping Samples

1
2

3
4

5
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Overlapping Samples (Con’t)
The following plots show the significant improvement in statistical 
confidence obtained by using overlapping samples in the calculation 
of the Hadamard deviation:
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MDEV to Identify W & F PM Noise
ADEV MDEV

W PM

F PM

The W and F FM noise slopes are both ≈ -1.0 on the ADEV plots, but they 
can be distinguished as –1.5 and –1.0 respectively on the MDEV plots. 
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Hadamard Deviation to Reject Drift
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Thêo1
Thêo1 [TH-1] is a new statistic currently under development that offers the 
ability to provide stability data at larger averaging factors.

Th o m N
N m m m

x x x xx
x m

m

i

N m

i i m i m i m

x

ê ( - , 01 1 1 1
20

2
2 1

2 1

1
2 2

2τ
τ δδ

δ δ, )
( )( ) ( / )

( ) ( )
( / )

( / )

/ /[ ]=
− −

− + −
=− −

−

=

−

− + + + +∑∑

δ
-4

-3

-2

-1

0

4

3

2

1

m/2 - δ
9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11x[ ]

Thêo1 Schematic for Nx=11, m=10
i =1 to Nx-m = 1 to 1, δ = -(m/2 -1) to m/2 -1 = -4 to 4

Thêo1 provides useful 
samples at an averaging 
factor, m, nearly equal 
to the record length Nx
(mmax=Nx-1)



5/4/03 FCS 2003 Tutorial 20

MTIE and TIE rms
! The maximum time interval error (MTIE) and rms time interval error (TIE 

rms) are clock stability measures commonly used in the telecom 
industry [M-3], [M-5].

! MTIE is determined by the extreme time deviations within a sliding 
window of span τ.  It is not as easily related to clock noise processes as 
TDEV [M-1].

! MTIE is computationally-intensive for large data sets [M-7].
! For no frequency offset, TIE rms is approximately equal to the standard 

deviation of the fractional frequency fluctuations multiplied by the 
averaging time.  It is therefore similar in behavior to TDEV, although the 
latter is better suited for divergent noise types.
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Overall Stability Analysis System
! Unit Under Test and Supporting Equipment

! Power, Monitoring & Environmental Control

! Reference Standard and Calibration Equipment
! Preferably More Stable than UUT

! Clock Measuring System
! Phase Data Preferred, High Resolution Required, No Dead Time Preferred

! Data Acquisition and Storage
! Time-Tagging, Data Formats, Multiple Channels, Server

! Analysis Workstation
! Offline from Measuring System

! Analysis Software
! Specialized Stability Statistics

! Analysis Techniques
! Outlier and Drift Removal, Noise Recognition, Allan and Other Variances

! Reporting Tools
! Plotting, Model Fitting, Interpretation of Results
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Measurement Systems
! A frequency counter can be used to directly make frequency 

measurements with modest resolution
! Higher resolution can be obtained from the following popular 

measurement system configurations:

! Heterodyne System
! Offset Reference
! Narrowband
! High Resolution
! Frequency Only
! Dead Time

! Time Interval Counter
! Std Freq Reference

! Wide Freq Range
! Fair Resolution
! Phase Measured
! No Dead Time
! Simple
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Measurement Systems (Con’t)
! Dual Mixer Time Interval

! Offset Reference
! Narrowband
! High Resolution
! Phase Measured
! No Dead Time
! Multiple Channels
! Complex

! High resolution clock 
measuring systems are 
available commercially 
[ME-6], [ME-7], [ME-8]
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Data Format
! The essential data are an array of equally-spaced phase or frequency 

values taken at particular measurement interval.
! The data must have sufficient resolution to support the analysis.  This 

can require many orders of magnitude of dynamic range, particularly for 
frequency data taken with an ordinary frequency counter, or long-term 
phase data for a source having a large frequency offset.

! The data may have an associated time tag array, which can be a 
significant advantage for relating the data to other events.  Use of the 
Modified Julian Date (MJD) is recommended.

! Data is most often stored as numeric ASCII characters, which provides 
the easiest transfer between different hardware and software.

! Non-numeric characters are often included as header information or 
comments, but are best put on separate lines.
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Phase vs. Frequency Data
! Phase data is preferred because it can be used to obtain frequency 

data, but the reverse it not strictly true.  Absolute phase cannot be 
reconstructed from frequency data, and a gap in the frequency data 
means that phase continuity is lost.

! Phase data can be used at a longer averaging time by simply re-
sampling (decimating) it.  Frequency data must be averaged to 
accomplish this, a process that takes much longer in a stability
algorithm.  It is generally faster (sometimes much faster) to convert 
frequency data to phase data before performing a stability calculation.

! Phase data applies directly to timing applications, and is fundamental 
for time distribution systems.

! Frequency data is often easier to “read”.  Outliers are more apparent, 
frequency changes are directly seen, and drift is more obvious.

! Frequency data is the more fundamental for most internal aspects of a 
frequency source.
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Basic Analysis Sequence

→ →

Phase Data Convert to Freq Remove Outlier

0.000000000000000e+00
8.999873025741449e-07
1.799890526185009e-06
2.699869215098003e-06
3.599873851209537e-06
4.499887627663997e-06
5.399836191440859e-06
6.299833612216789e-06
7.199836723454638e-06
8.099785679257264e-06
8.999774896024524e-06
9.899732698242008e-06

Etc.

Phase data is just a 
ramp with slope 
corresponding to 
freq offset.

Outlier obvious in 
freq data – must 
remove it to 
continue analysis.

Can now see 
noise and drift.

Visual inspection of data is an important 
preprocessing step!
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Basic Analysis Sequence (Con’t)

→ → →

↓

Remove Freq Offset Remove Freq Drift

Analyze Stability

Get Freq Residuals

Quadratic shape is 
due to freq drift -
can now begin to 
see phase 
fluctuations.

Phase and freq 
residuals allow 
noise to be clearly 
seen.

Notice W & F FM 
Slopes at simulated 
levels
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Preprocessing
! Preprocessing is usually necessary before the formal stability analysis 

is started.
! Phase data may be decimated or frequency data averaged to a longer 

tau.  This will shorten the data file and make subsequent processing 
faster, but is a disadvantage for overlapping and total statistics.

! Phase <-> Frequency conversions may be performed.
! The data may be plotted and examined visually for steps, jumps, spikes, 

glitches, interference and other anomalies.
! A portion of the data may be selected for analysis.
! Outliers may be found and removed (with discretion).  One should

understand why the data point is invalid.
! Frequency offset may be removed.
! Frequency drift may be analyzed and removed.
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Phase-Frequency Conversions
! Phase data can be converted to frequency data by dividing the 1st

difference of phase by tau: yi = (xi - xi-1) / τ.
! Frequency data can be converted to phase data by multiplying the

frequency by tau and adding it to the phase: xi = xi-1 + (yi-1) · τ.
! Phase to frequency conversion is straightforward unless the two phase 

values are the same, which gives y = 0, and can be confused with a 
gap.  Using a small non-zero value (e.g. 1e-99) will solve this.  But two 
identical adjacent phase values can be a sign of data quantization or a 
measurement problem.

! Frequency to phase conversion is undefined if there is a gap in the 
data.  To preserve phase continuity, the average frequency value can 
be used to integrate through the gap.

! The individual time tag interval can be used instead of a fixed tau for 
non uniformly-spaced data.
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Outliers
! It is important to have (and use) a consistent way to identify and remove 

outliers, based on the the methods of robust statistics [R-2].
! This is much easier to do for frequency (rather than phase) data.
! An outlier is an extreme data point that is significantly larger or smaller 

than most others (often a case of “I’ll know it when I see it”).
! The median is a robust way to determine the center value (an outlier 

affects the mean).
! The deviation from the median is a robust way to determine whether a 

point is an outlier.
! The median absolute deviation (MAD) [R-3] is a robust way to set the 

criterion for an outlier. It is the median of the (scaled) absolute 
deviations of the data points from their median value, and is defined as:

MAD = Median {  | y(i) - m | / 0.6745 }

where m=Median { y(i) }, and the factor 0.6745 makes the MAD equal to 
the standard deviation for normally distributed data.

! An outlier criterion of 5X the MAD is usually a good choice.
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Frequency Offset

1. Linear Fit: The first (optimal for white PM noise) uses a least-squares 
linear fit to the phase data, x(t) = a + bt, where slope = y(t) = b. 

2. Endpoints: The second method simply uses the difference between the 
first and last points of the phase data, slope = y(t) = [ x(end) − x(start) ] / 
(M-1), where M = # phase data points. This method (optimal for white 
FM noise) can be used to match the two endpoints. 

Frequency offset is usually calculated for frequency data as the average 
(mean) of the frequency values.

Frequency offset may be calculated for phase data by either of two 
methods: 



5/4/03 FCS 2003 Tutorial 32

Drift Analysis and Removal

1. Quadratic Fit: The first is a least-squares quadratic fit to the phase 
data, x(t) = a + bt + ct², where y(t) = x'(t) = b + 2ct, slope = y'(t) = 2c. 
This method is optimum for white PM noise [G-16]. 

2. 2nd Differences: The second method is the average of the 2nd

differences of the phase data, y(t) = [x(t+τ)−x(t)]/τ, slope = [y(t+τ)−y(t) 
]/τ = [ x(t+2τ)−2x(t+τ)+x(t)]/τ².This method is optimum for random walk 
FM noise [D-4]. 

3. 3-Point: The third method uses the 3 points at the start, middle and end
of the phase data, slope = 4[x(end)−2x(mid)+x(start)]/(Mτ)², where M = 
# data points It is the equivalent of the bisection method for frequency 
data [D-3].

Three methods are commonly used to analyze frequency drift in phase data: 
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Drift Analysis and Removal (Con’t)

1. Linear Fit: The first, the default, is a least squares linear regression to
the frequency data, y(t) = a+bt, where a = intercept, b = slope = y'(t). 
This is the optimum method for white FM noise. 

2. Bisection: The second method computes the drift from the frequency 
averages over the first and last halves of the data, slope = 2 [ y(2nd 
half) − y(1st half) ] / (Nτ), where N = # points. This bisection method is 
optimum for white and random walk FM noise. 

3. Log Fit: The third method, a log model of the form (see MIL-O-55310B), 
y(t) = a·ln(bt+1), where slope = y'(t) = ab/(bt+1) which applies to 
frequency stabilization. 

4. Diffusion Fit: The last frequency drift method is a diffusion (√ t) model of 
the form y(t) = a+b(t+c)1/2, where slope=y'(t)=½·b(t+c)-1/2. 

Four methods are commonly used to analyze frequency drift in frequency 
data:
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Bias and Confidence
! It is not enough to simply calculate one of these statistics.  It is also 

necessary to know what value it is expected to converge to, and how 
closely it has done so.

! The Allan variance is defined so that its expected value is the same as 
the standard variance for white FM noise.  Most of the other clock 
statistics are either defined likewise, or are biased estimators of the 
Allan variance for which (noise and sample size dependent) corrections 
must be applied.

! Thus, properly applied and corrected, all of these statistics converge to 
the same expected value, with increasing confidence as the number of 
samples increases.

! The uncertainly in the result can be estimated and used to set 
confidence intervals and error bars, using the theory of Χ2 statistics that 
applies to variances.

! This requires knowledge of the equivalent number of degrees of 
freedom (EDF), which is also a function of the noise type and number of 
samples.
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Noise Identification
! Noise type identification is important not only for understanding the 

physical basis of the instability but also to apply bias corrections and to 
set confidence limits.

! The noise type may be known a priori, or can be determined by a 
preliminary analysis from the slope of a log σ vs. log τ stability plot.

! Preferably, the noise identification is performed automatically at each 
averaging time during a stability run to support bias corrections and 
error bar determination.

! A way for automatic noise identification is to calculate additional vari-
ances (e.g. standard or mod Allan) whose ratio to the desired variance 
(e.g. Allan) is dependent in a known way on the noise type [N-6].

! The Barnes B1 and R(n) ratios can be used for this purpose.
! B1 is the ratio of the standard (N-sample) and Allan (2-sample) 

variances [N-3].
! R(n) is the ratio of the modified Allan and Allan variances [G-16].
! Analytic expressions are available to relate these ratios to the noise 

type and number of data samples.
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Noise Identification (Con’t)
The dominant power law noise type can be estimated by comparing the 
ratio of the N-sample (standard) variance to the 2-sample (Allan) variance of 
the data (the B1 bias factor) to the value expected of this ratio for the pure 
noise types (for the same averaging factor).  This method of noise 
identification, while not perfect, is reasonably effective in most cases.  The 
main limitations are (1) its inability to distinguish between white and flicker 
PM noise, and (2) its limited precision at large averaging factors where 
there are few analysis points.  The former limitation can be overcome by 
supplementing the B1 ratio test with one based on R(n), the ratio of the 
modified Allan variance to the normal Allan variance.  That technique is 
applied to members of the modified family of variances (MVAR, TVAR, and 
MTOT).  The second limitation can be avoided by using the previous noise 
type estimate at the longest averaging time of an analysis run. One further 
limitation is that the R(n) ratio is not meaningful at a unity averaging factor.  
A description of this power law noise identification method can be found in 
Reference [N-6].
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Confidence Intervals
Sample variances are distributed according to the expression:

EDF · s²
χ² =  

σ²

where χ² is the Chi-square, s² is the sample variance, σ² is the true 
variance, and EDF is the Equivalent number of Degrees of  Freedom (not 
necessarily an integer).  The EDF is determined by the number of analysis 
points and the noise type.  Single or double-sided confidence intervals 
(error bars) with a certain confidence factor may be set for variances based 
on χ² statistics.  The general procedure is to choose a confidence factor, p, 
calculate the corresponding χ² value, determine the EDF from the variance 
type, noise type and number of analysis points, and then set the statistical 
limit(s) on the variance.  For double-sided limits:

EDF EDF
σ²min = s2 ⋅  and σ²max = s2 ⋅ 

χ²(p, EDF) χ²(1-p, EDF)
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EDF
! The Equivalent # of Χ2 Degrees of Freedom (EDF) is needed to 

determine confidence intervals and set error bars for a variance
estimate.

! The EDF value depends on the variance type, the noise type, and the 
number of data points used in the analysis.

! Empirical formulae exist for determining the approximate EDF value.
! Some variance types use a large number of highly-correlated 2nd

differences to obtain a larger EDF for better confidence.

Variance Type EDF Determination Method Reference
Allan & Hadamard σ/√N & Kn, see p. TN-182 [G-16]
Overlapping Allan See Table 12.4 (as corrected) [G-11]
Modified & Time Allan HEDF w/ modified args [HV-8]
Overlapping Hadamard HEDF [HV-8]
Total See Table I [T-7]
Modified & Time Total See §4.2 & Table 1 [MT-1]
Hadamard Total See Eq. (7) & Table 1 [HV-9]
Thêo1 Currently Under Investigation [TH-1]
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ADEV EDF Example

1
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100

1000

1 10 100

EDF=[(3(N-1)/2m)-(2(N-2)/N)]⋅[4m2/(4m2+5)]
500

100

50

10

5

N=

Averaging Factor, m

ED
F

ADEV EDF for W FM Noise

EDF falls off
to 1
at m≈N/2
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ADEV EDF Example (Con’t)

1

10

100

1 10 100

 α     Noise
 2     W  PM
 1     F   PM
 0     W  FM
-1     F   FM
-2   RW FM

-2

-1

0

1

2
α=

Averaging Factor, m

ED
F
ADEV EDF for N=100

EDF 
generally 
lower for 
more 
divergent 
noise types

EDF nearly 
independent 
of m for W 
PM noise

EDF ≈ N/m 
for α ≤ 0
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EDF vs Variance Type
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for total 
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with their 
non-total 
equivalents
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Postprocessing
! Dead Time Correction

! Apply Barnes B2 and B3 Bias Ratio
! Important for non-white noises and large dead time ratios

! Reference Correction
! Separation of Variances

! 1 of 2 Clocks Correction
! Divide sigma by √2
! Use when measuring 2 identical units

! Noise Line Fitting
! Fit power law noise lines to stability data

! Interpretation of Results
! Data presentation and discussion
! Correlation with clock physics
! Understanding of environmental effects
! Explanations for anomalies
! Suitability for application
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Dead Time

Dead time between frequency 
measurements can affect the results 
of a stability analysis, and should be 
avoided if possible.

Otherwise, the Barnes B2 and B3
bias ratios should be used to correct 
for the effect of dead time [DT-2].

This is an example of the effect of 
dead time on W PM noise sampled 
with a 100-second measurement 
once per hour, and the use of dead 
time corrections.
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Separation of Variances
! The so-called “3-Cornered Hat” method can be used to separate the 

variances of the unknown and reference clocks 
in a stability measurement [3C-2], [3C-10].

! Three measurements are made of the 
sources in pairs, and are processed to 
obtain the individual variances.

! The method works best with large data sets for uncorrelated devices 
having similar stabilities – otherwise non-physical negative variances 
can result.  A “perfect” reference is still the best!

Measured ADEVs Separated ADEVs
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Phase Steps/Frequency Spikes
The Allan deviation of a frequency record having large spike (a phase step) 
has a τ-1/2 characteristic [G-13]. This can be a source of confusion, but can 
also be used as a means for simulation.  For example, adding a single large  
central outlier (e.g. 106) to an otherwise much smaller 1000-point data set 
yields a white FM noise level of σy(τ0)=[(106)2/(1000-1)]1/2 = 3.16386e4.
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Data Quantization
While it is desirable to have sufficient resolution that the data is noise rather 
than resolution limited, highly quantized data can provide good stability 
information provided that there is a least 1 bit of meaningful variation.

Random 
telegraph 
signal 
representing 
frequency data 
having a white 
FM noise 
characteristic
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Cyclic Environmental Sensitivity
The combination of an environmental sensitivity and a cyclic disturbance 
will cause the time-domain stability to display a distinctive pattern of
maxima and minima at the half period and period of the stimulus as given 
by the expression: 

where: ∆f/f = peak frequency deviation, T = period of disturbance, and τ = 
averaging time.

An example of such a stability record is shown below. This is a simulation 
of the stability of a GPS Block IIR rubidium atomic frequency standard 
(RAFS) with typical white FM and flicker FM noise levels of 2x10-12τ-1/2 and 
2x10-14 respectively, plus a temperature coefficient of 2x10-13/°C, when 
exposed to a sinusoidal orbital temperature variation of 5°C p-p with a 12-
hour period. The actual clock has a baseplate temperature controller (BTC) 
that reduces this thermal sensitivity to below the noise level. Even this 
large periodic variation does not prevent determining the underlying noise 
level.
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Cyclic Environmental Sensitivity
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Vibrational Modulation

The same general 
expression applies to 
the effect of vibrational 
modulation on the 
stability of a frequency 
source.  It should be 
noted that the envelope 
of the resulting stability 
plot shows both (at the 
top) the vibrational FM 
(1x10-9·√2 rms at 
1/2·fvib) and the noise 
(1x10-12τ-1).  Minima 
occur at averaging 
times equal to multiples 
of the vibration period.
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Histogram
A histogram shows the amplitude distribution of the phase or frequency 
fluctuations, and can provide insight regarding them.  One can expect a 
normal (Gaussian) distribution for a reasonably-sized data set, and a 
different (e.g. bimodal) distribution can be a sign of a problem.  For a 
normal distribution, the standard deviation is approximately equal to the 
half-width at half-height  (HWHA=1.177σ) .
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Power Spectral Densities
Frequency stability is described in the frequency domain by several power 
spectral densities:

PSD of Frequency Fluctuations Sy(f)
The power spectral density (PSD) of the fractional frequency fluctuations 
y(t) in units of 1/Hz is given by Sy(f) = h(α)·fα, where f=sideband frequency, 
Hz and h(α) is an intensity coefficient.

PSD of Phase Fluctuations Sφ(f)
The PSD of the phase fluctuations in units of rad²/Hz is given by Sφ(f) = 
(2πν0)² · Sx(f), where ν0=carrier frequency, Hz.

PSD of Time Fluctuations Sx(f)
The PSD of the time fluctuations x(t) in units of sec²/Hz is given by Sx(f) = 
h(β)·fβ = Sy(f)/(2πf)²,  where β=α-2.  The time fluctuations are related to the 
phase fluctuations by x(t)= φ(t)/2πν0.

SSB Phase Noise £(f)
The SSB phase noise in units of dBc/Hz is given by £(f) = 10·log[½ · Sφ(f)].  
This is the most common engineering unit to specify phase noise.
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Domain Conversions
Conversions can be made between time and frequency domain stability 
measures.  These conversions are unique from the frequency domain, but 
may not be for the opposite case.  For the Allan variance, the relationship is:

And, for the modified Allan and time deviations, the relationship is:

These conversions may be performed by numerical integration.
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Domain Conversions (Con’t)
Domain conversions may be made for power law noise models by using the 
following conversion formulae:

Noise Type σ²y(τ) Sy(f) 
RW FM A·f2 ·Sy(f)·τ1 A-1·τ-1·σ²y(τ)·f-2
F FM B·f1 ·Sy(f)·τ0 B-1·τ0·σ²y(τ)·f-1
W FM C·f0 ·Sy(f)·τ-1 C-1·τ1·σ²y(τ)·f0
F PM D·f-1·Sy(f)·τ-2 D-1·τ2·σ²y(τ)·f1
W PM E·f-2·Sy(f)·τ-2 E-1·τ2·σ²y(τ)·f2

where:
A=4π²/6
B=2·ln2
C=1/2
D=1.038+3·ln(2πfhτ0)/4π²
E=3fh/4π²

and  fh is the upper cutoff frequency of the measuring system in Hz, and τ0
is the basic measurement time.  The fh factor applies only to white and 
flicker PM noise.
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Spectral Analysis

Spectral analysis is another method to 
characterize frequency stability.  In the 
context of the time-domain techniques 
considered here, it can provide 
additional information about the noise 
type, and show the presence of 
interference.

The subject of spectral analysis is a 
broad one.  Issues include reducing bias 
with windowing (tapering) functions, and 
reducing variance with averaging 
(smoothing).  A distinguishing aspect of 
its application to frequency stability 
analysis is the emphasis on noise, 
rather than discrete components.  
Besides FFT-based periodograms, the 
multitaper method is recommended.
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Spectral Analysis (Con’t)

Commercial instruments are available [ME-6] to take relatively fast, high 
resolution time domain phase data and present it both as Allan deviation 
and £(f), as shown below for a small rubidium frequency standard.
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Reporting
The results of a stability analysis are usually presented as a combination of 
textual, tabular and graphic forms. The text describes the device under test, 
the test setup, and the methodology of the data preprocessing and analysis, 
and summarizes the results. The latter often includes a table of the stability 
statistics. Graphical presentation of the data at each stage of the analysis is 
generally the most important aspect of presenting the results. For example, 
these are often a series of plots showing the phase and frequency data with 
an aging fit, phase and frequency residuals with the aging removed, and 
stability plots with noise fits and error bars. Plot titles, sub-titles, annotations 
and inserts can be used to clarify and emphasize the data presentation. The 
results of several stability runs can be combined, possibly along with 
specification limits, into a single composite plot. The various elements can 
be combined into a single electronic document for easy printing and 
transmittal.
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Data Plots
Data plotting is often the most important step in the analysis of frequency 
stability. Visual inspection can provide vital insight into the results, and is 
an important "preprocessor'' before numerical analysis. A plot also shows 
much about the validity of a curve fit. 

Phase data is generally plotted as line segments 
connecting the data points.  This presentation properly 
conveys the integral nature of the phase data.

Frequency data is often plotted the same way, simply 
because that is the way plotting is usually done. But a 
better presentation is a flat horizontal line between the 
frequency data points. This shows the averaging time 
associated with the frequency measurement, and 
mimics the analog chart record from a counter.

As the density of the data points increases, there is 
essentially no visual difference between the two 
plotting methods, and the point method is faster.
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Data Plots (Con’t)
001 002 003 004 005

006 007 008 009 010

011 012 013 014 015

016 017 018 019 020

Small multiple plots can be a 
useful visual tool for comparing 
behavior, as shown in these 
aging plots for GPS Rb clocks 
[SW-7].

Fits to linear, log, diffusion or 
other drift models can support 
stability analysis and aid in 
understanding the physical 
processes involved.
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Stability Plots

Stability plots generally take the form of graphs of log versus log , often with 
error bars to shown the precision of the results. The slope of the σy(τ) 
characteristic depends on the type of noise. It is customary to show points 
at binary increments of tau. These are equally spaced on the log scale, and 
are the result of successive averaging by two. Such a run usually ends 
when there are too few analysis points (say < 7) for reasonable confidence. 
A run for all possible values, while slow, can provide valuable information 
since it is, in effect, a form of spectral analysis that can show periodic 
instabilities such as environmental effects.  Such an all-tau run can be 
made much faster by spacing the points no closer than can be seen on the 
display device.
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All Tau
Stability calculations made at all possible tau values can provide an 
excellent indication of the variations in the results, and are a simple form of 
spectral analysis.  In particular, cyclic variations are often the result of 
interference between the sampling rate and some periodic instability (such 
as environmental sensitivity).

An all tau analysis is computationally-intensive and can therefore be slow.  
For most purposes, however, it is not necessary to calculate values at every 
tau, but instead to do so at enough points to provide a nearly continuous 
curve on the display device (screen or paper).  Such a “many tau” analysis 
can be orders-of-magnitude faster and yet provide the same information.

Many tau 
calculates just 
enough points 
to produce a 
smooth plot

!
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MDEV and TDEV
Loci of constant TDEV can be added to an MDEV plot
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Software Validation

1. Manual Analysis: The results obtained by manual analysis of small 
data sets (such as NBS Monograph 140 Annex 8.E [G-4]) can be 
compared with the new program output. This is always good to do to 
get a "feel'' for the process. 

2. Published Results: The results of a published analysis or test suite 
can be compared with the new program output [SW-3], [SW-4].

3. Other Programs: The results obtained from other specialized stability 
analysis programs [SW-6], or from a previous generation computer or 
operating system, can be compared with the new program output. 

4. General Programs: The results obtained from industry standard, 
general purpose mathematical and spreadsheet programs (such as 
MathCAD and Excel) can be compared with the new program output. 

Several methods are available to validate frequency stability analysis 
software: 



5/4/03 FCS 2003 Tutorial 63

Software Validation (Con’t)

5. Consistency Checks: The new program should be verified for internal 
consistency, such as producing the same stability results from phase 
and frequency data. The standard and Allan variances should be 
approximately equal for white FM noise. The Allan and modified Allan 
variances, and total variance, should be identical for an averaging 
factor of 1. For other averaging factors, the modified Allan variance 
should be approximately one-half the normal Allan variance for white 
FM noise and τ >> τ0. The normal and overlapping Allan variances, and 
total variance, should be approximately equal, while the overlapping 
method and total variance provide better confidence of the stability 
estimates. The various methods of drift removal should yield similar 
results. 

6. Simulated Data: Simulated clock data can also serve as a useful cross 
check. Known values of frequency offset and drift can be inserted, 
analyzed and removed. Known values of power law noise can be 
generated, analyzed, plotted and modeled. 
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